TRACE User Guide  TRACE Version 9.6.1
Bibliography
[1]

Graham Ashcroft, Christian Frey, and Hans-Peter Kersken. On the development of a harmonic balance method for aeroelastic analysis. In 6th European Conference on Computational Fluid Dynamics (ECFD VI), pages 5885–5897, 2014.

[2]

S. Banerjee, R. Krahl, F. Durst, and Ch. Zenger. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul., 8:N32, 2007.

[3]

Jorge Bardina, J. H. Ferziger, and R. S. Rogallo. Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., 154:321–336, 1985.

[4]

Kai Becker, Graham Ashcroft, Stefan Rochhausen, Anton Weber, Jose Rodriguez, and Gregor Schmid. On the application of a harmonic balance method with a volume source cooling model to the simulation of a film-cooled turbine stage. In Proceedings of ASME Turbo Expo 2016, number GT2016-57199, Seoul, South Korea, June 2016. ASME.

[5]

Marsha Berger, Michael J. Aftosmis, and Scott M. Murman. Analysis of slope limiters on irregular grids. American Institute of Aeronautics and Astronautics, May 2005. Paper 2005-0490.

[6]

Jason A. Bourgeois, Robert J. Martinuzzi, Eric Savory, Chao Zhang, and Douglas A. Roberts. Assessment of turbulence model predictions for an aero-engine centrifugal compressor. J. Turbomach., 133(1):011025, 2011.

[7]

N. Chauvet, S. Deck, and L. Jacquin. Zonal detached eddy simulation of a controlled propulsive jet. AIAA Journal, 45(10):2458–2473, 2007.

[8]

N. A. Cumpsty and J. H. Horlock. Averaging nonuniform flow for a purpose. J. Turbomach., 128(1):120–129, 2006.

[9]

B. Eisfeld. Implementation and validation of the Hellsten k-ω EARSM. DLR Interner Bericht IB 124-2003/33, Institut für Aerodynamik und Strömungstechnik, 2003.

[10]

J. I. Erdos, E. Alzner, and W. McNally. Numerical solution of periodic transonic flow through a fan stage. AIAA J., 15(11):1559–1568, November 1977.

[11]

Christian Frey, Graham Ashcroft, Hans-Peter Kersken, and Christian Weckmüller. Advanced numerical methods for the prediction of tonal noise in turbomachinery — Part II: Time-linearized methods. J. Turbomach., 136(2):021002, 2013.

[12]

Christian Frey, Graham Ashcroft, Hans-Peter Kersken, and Christian Voigt. A harmonic balance technique for multistage turbomachinery applications. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, number 45615, page V02BT39A005, 2014.

[13]

M. Giles. UNSFLO: A numerical method for the calculation of unsteady flow in turobmachinery. Technical report, Gas Turbine Laboratory Report GTL 205, MIT Dept. of Aero. and Astro., 1991.

[14]

M.S. Gritskevich, A.V. Garbaruk, J. Schütze, and F.R. Menter. Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88(3):431–449, 2012.

[15]

A. Harten and J. A. Hyman. Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys., 50(2):235–269, May 1983.

[16]

A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49(2):357–393, 1983.

[17]

L. He. Method of simulating unsteady turbomachinery flows with multiple perturbations. AIAA J., 30(11):2730–2735, November 1992.

[18]

Antti Hellsten, Seppo Laine, Antti Hellsten, and Seppo Laine. Extension of the k-omega-sst turbulence model for flows over rough surfaces. In 22nd atmospheric flight mechanics conference, page 3577, 1997.

[19]

A. Hellsten. New advanced k-ω tuburlence model for high-lift aerodynamics. AIAA J., 43(9):1857–1869, 2005.

[20]

Sebastian Hennemann, Andrés M. Rueda-Ramírez, Florian J. Hindenlang, and Gregor J. Gassner. A provably entropy stable subcell shock capturing approach for high order split form dg for the compressible euler equations. Journal of Computational Physics, 426:109935, 2021.

[21]

Gianluca Iaccarino, Aashwin Ananda Mishra, and Saman Ghili. Eigenspace perturbations for uncertainty estimation of single-point turbulence closures. Phys. Rev. Fluids, 2:024605, Feb 2017.

[22]

M. Kato and B. E. Launder. The modeling of turbulent flow around stationary and vibrating square cylinders. In 9th Symposium on Turbulent Shear Flows, pages 10.4.1–10.4.6, 1993.

[23]

Hans-Peter Kersken, Christian Frey, Christian Voigt, and Graham Ashcroft. Time-linearized and time-accurate 3D RANS methods for aeroelastic analysis in turbomachinery. J. Turbomach., 134(5):051024, 2012.

[24]

Keiichi Kitamura and Atsushi Hashimoto. Reduced dissipation ausm-family fluxes: Hr-slau2 and hr-ausm+-up for high resolution unsteady flow simulations. Computers & Fluids, 126:41–57, 2016.

[25]

K. Kitamura and E. Shima. Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for ausm-family schemes. Journal of Computational Physics, 245:62–83, 2013. cited By 125.

[26]

Dragan Kozulovic and Thomas Röber. Modelling the streamline curvature effects in turbomachinery flows. In ASME Turbo Expo 2006, May 2006. Paper No. GT2006-90265.

[27]

Dragan Kozulovic. Modellierung des Grenzschichtumschlags bei Turbomaschinenströmungen unter Berücksichtigung mehrerer Umschlagsarten. Dissertation, Ruhr-Universität Bochum, October 2007. also DLR-FB 2007-20.

[28]

Robin Langtry and Florian Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J., 47(12):2894–2906, 2009.

[29]

B. E. Launder, G. Reece, and W. Rodi. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68:537–566, 1975.

[30]

Paul Malan, Keerati Suluksna, and Ekachai Juntasaro. Calibrating the γ-Re_θ transition model for commercial CFD. In Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics, January 2009.

[31]

Marcel Matha, Christian Morsbach, and Michael Bergmann. A comparison of methods for introducing synthetic turbulence. 7th European Conference on Computational Fluid Dynamics, 2018.

[32]

F. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST model. In K. Hanjalic, Y. Nagano, and M. Tummers, editors, Turbulence, Heat and Mass Transfer 4, 2003.

[33]

F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker. A correlation-based transition model using local variables—part I: Model formulation. J. Turbomach., 128(3):413–422, 2006.

[34]

Florian R. Menter, Pavel E. Smirnov, Tao Liu, and Ravikanth Avanch. A one-equation local correlation-based transition model. Flow, Turbulence and Combustion, 95(4):583–619, jul 2015.

[35]

F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32(8):1598–1605, August 1994.

[36]

Charles Mockett, Marian Fuchs, Andrey Garbaruk, Michael Shur, Philippe Spalart, Michael Strelets, Frank Thiele, and Andrey Travin. Two non-zonal approaches to accelerate rans to les transition of free shear layers in des. In Progress in Hybrid RANS-LES Modelling, pages 187–201. Springer International Publishing, 2015.

[37]

Christian Morsbach and Martin Franke. Analysis of a synthetic turbulence generation method for periodic configurations. May 2017.

[38]

Christian Morsbach. Reynolds Stress Modelling for Turbomachinery Flow Applications. Dissertation, TU Darmstadt, December 2016.

[39]

F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combus., 62(3):183–200, September 1999.

[40]

Per-Olof Persson and J. Peraire. Sub-cell shock capturing for discontinuous galerkin methods. AIAA paper, 2, 2006.

[41]

A. Probst and S. Reuß. Progress in scale-resolving simulations with the dlr-tau code. Deutscher Luft- und Raumfahrtkonrgress, 2016.

[42]

Thomas Röber. New Results in Numerical and Experimental Fluid Mechanics VIII: Contributions to the 17th STAB/DGLR Symposium Berlin, Germany 2010, chapter Continuous Formulation of Wall Function with Adverse Pressure Gradient, pages 411–418. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[43]

Stefan Rochhausen. Reformulation of a two-equation model for the turbulent heat transfer. In 7th International Symposium on Turbulence, Heat and Mass Transfer, Palermo, Sicily, Italy, September 2012.

[44]

P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43(2):357 – 372, 1981.

[45]

Christopher L. Rumsey, Brian R. Smith, and George P. Huang. Description of a website resource for turbulence modeling verification and validation. In 40th AIAA Fluid Dynamics Conference and Exhibit, number AIAA-2010-4742, Chicago, IL, USA, June 2010.

[46]

S. Sarkar. The pressure–dilatation correlation in compressible flows. Phys. Fluids A Fluid Dyn., 4(12):2674–2682, 1992.

[47]

H. Schade and E. Kunz. Strömungslehre, volume 3. 2007.

[48]

M.L. Shur, P.R. Spalart, M.Kh. Strelets, and A.K. Travin. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29:1638–1649, 2008.

[49]

Michael L. Shur, Philippe R. Spalart, Michael K. Strelets, and Andrey K. Travin. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combus., 93(1):63–92, 2014.

[50]

M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin. An enhanced version of des with rapid transition from rans to les in separated flows. Flow Turbulence and Combustion, 95:709–737, 2015.

[51]

Joseph Smagorinsky. General circulation experiments with the primitive equations. In Monthly Weather Review, volume 91, pages 99–164, 1963.

[52]

Philippe R. Spalart and Christopher L. Rumsey. Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA Journal, 45(10):2544–2553, October 2007.

[53]

P. Spalart, W. Jou, M. Strelets, and S. Allmaras. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach. In International Conference on DNS/LES, Aug. 4-8, 1997, Ruston, Louisiana., 1997.

[54]

P. Spalart, S. Deck, M. Shur, K. Squires, M. Strelets, and A. Travin. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comp. Fluid Dyn., 20:181–195, 2006. 10.1007/s00162-006-0015-0.

[55]

M. Strelets. Detached Eddy Simulations of massively separated flows. In Proc. 39 textsuperscript th Aerospace Science Meeting and Exhibit, Reno, USA, 2001. AIAA Paper 2001-0879.

[56]

William Sutherland. LII. the viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–531, 1893.

[57]

James L. Thomas, Boris Diskin, and Hiroaki Nishikaw. A critical study of agglomerated multigrid methods for diffusion on highly-stretched grids. Comput. Fluids, 41:82–93, 2011.

[58]

B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and R.J.R. Williams. An improved reconstruction method for compressible flows with low mach number features. Journal of Computational Physics, 227(10):4873–4894, 2008.

[59]

T. L. Tysinger and D. A. Caughey. Implicit multigrid algorithm for the Navier-Stokes equations. AIAA Paper 91–0242, 1991.

[60]

T. von Kármán. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of the United States of America, 1948.

[61]

S. Wallin and A. V. Johansson. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech., 403:89–132, 2000.

[62]

S. Wallin and A. V. Johansson. Modelling streamline curvature effects in explicit algebraic reynolds stress turbulence models. Int. J. Heat Fluid Fl., 23:721–730, 2002.

[63]

H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In 8th Symposium on Turbulent Shear Flows, Munich, Germany, September 1991.

[64]

David C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 26(11):1299–1310, November 1988.

[65]

D. C. Wilcox. Progress in hypersonic turbulence modeling. AIAA, 1991. AIAA Paper 91-1785.

[66]

D. C. Wilcox. Dilatation-dissipation corrections for advanced turbulence models. AIAA J., 30(11):2639–2646, 1992.

[67]

D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Cañada, USA, 3 edition, 2006.