TRACE User Guide  TRACE Version 9.6.1
Wilcox k-w

The \(k\)- \(\omega\) two-equation model is based on a formulation by Wilcox [64] . It has been continuously developed, extended and validated since its inception. In TRACE, a number of extensions are activated by default. Below is a description of the model itself and the most important extensions available in TRACE

Original model

The Reynolds stress tensor for the \(k\)- \(\omega\) model is computed according to

\begin{eqnarray} \tau_{ij}^* = 2 \mu_T^* \left( S_{ij}^* -\frac{1}{3}\frac{\partial u_k^*}{\partial x_k^*} \right) - \frac{2}{3} \rho^* k^* \delta_{ij} \end{eqnarray}

where the turbulent kinetic energy \(k\) is defined as

\begin{eqnarray} k = \frac{1}{2} \overline{u_i'u_i'} \end{eqnarray}

The mean strain rate and vorticity tensors are defined as, respectively,

\begin{eqnarray} S_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{eqnarray}

and

\begin{eqnarray} \Omega_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \end{eqnarray}

To determine the unknowns, two transport equations of the turbulent kinetic energy \(k\) and the specific dissipation rate \(\omega\) are introduced and have to be solved:

\begin{eqnarray} \frac{\partial}{\partial t} \left( \rho k \right) + \frac{\partial}{\partial x_j} \left( \rho u_j k \right) = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta_k \rho \omega k + \frac{\partial}{\partial x_j} \left[ \left( \mu + \sigma_k \mu_T \right) \frac{\partial k}{\partial x_j} \right] \end{eqnarray}

\begin{eqnarray} \frac{\partial}{\partial t} \left( \rho \omega \right) + \frac{\partial}{\partial x_j} \left( \rho u_j \omega \right) = \alpha \frac{\omega}{k} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta_\omega \rho \omega^2 + \frac{\partial}{\partial x_j} \left[ \left( \mu + \sigma_\omega \mu_T \right) \frac{\partial \omega}{\partial x_j} \right] \end{eqnarray}

Once \(k\) and \(\omega\) are determined the following relation leads to the turbulent viscosity \(\mu_T\):

\begin{eqnarray} \mu_T = \frac {\rho k}{\omega} \Leftrightarrow \nu_T = \frac{k}{\omega} \end{eqnarray}

The constants take the values

\(\alpha\) \(\beta_\omega\) \(\beta_k\) \(\sigma_k\) \(\sigma_\omega\)
5/9 3/40 9/100 1/2 1/2

Modifications available for the Wilcox 1988 model

Model Equations with all default extensions activated

With all the modifications that are by default included, the turbulence model equations can be rewritten as

\begin{eqnarray} \frac{D \rho k}{Dt} = \frac{\partial}{\partial x_j} \left[ (\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right] + P_k - D_k + \underbrace{\alpha_2 M_t P_k + \alpha_3 M_t^2 D_k}_{\text{pressure dilatation}} - \underbrace{\frac{3}{2} \max \left( M_t^2 - \frac{1}{16}, 0 \right) D_k }_{\text{turbulent mixing layer}} \end{eqnarray}

\begin{eqnarray} \frac{D \rho \omega}{Dt} &=& \frac{\partial}{\partial x_j} \left[ (\mu + \sigma_k \mu_t) \frac{\partial \omega}{\partial x_j} \right] + P_{\omega} - D_{\omega} \\ &&- \underbrace{\alpha_2 M_t \frac{\omega}{k} P_k + \alpha_3 M_t^2 \frac{\omega}{k} D_k}_{\text{pressure dilatation}} - \underbrace{\frac{3}{2} \frac{\beta_k}{\beta_{\omega}} \max \left( M_t^2 - \frac 1 {16}, 0 \right) D_{\omega}}_{\text{turbulent mixing layer}} - \underbrace{c_2 \rho \omega \Omega_\mathrm{norm}}_{\text{rotation}} \end{eqnarray}