TRACE User Guide  TRACE Version 9.6.1
Details

AeroDamping

Aerodynamic damping for a structural mode.

Definition:

\[ \delta = -\frac{\Re W_\mathrm{cyc}}{2E} \]

AeroExcitation

Aerodynamic excitation (in the context of forced response analysis).

Definition:

\[ \epsilon = \frac{|W_\mathrm{cyc}|}{2E} \]

AeroExcitationScaled

Aerodynamic excitation (in the context of forced response analysis) scaled by the AmplificationFactor used during the mapping process of the eigenmode displacements. The scaled excitation is the aerodynamic excitation with respect to the unscaled eigenmode displacements.

Definition:

\[ \epsilon_{scaled} = \epsilon \cdot \mathrm{AmplificationFactor} \]

AeroStiffness

Aerodynamic stiffness for a structural mode.

Definition:

\[ \kappa = \frac{\Im W_\mathrm{cyc}}{2E} \]

AeroStimulus

Aerodynamic stimulus.

Definition:

\[ S = W_\mathrm{cyc} / \int_\Gamma |\Psi^H \widehat{(p\vec n)}_0| dS \]

AeroStimulusSigned

Aerodynamic stimulus with respect to the signed mean aerodynamic forces.

Definition:

\[ S_{\mathrm{signed}} = W_\mathrm{cyc} / |\int_\Gamma \Psi^H \widehat{(p\vec n)}_0 dS| \]

AeroWork

Work per cycle exerted by the aerodynamic forces for an eigenmode \(\Psi\).

Definition:

\[ W_\mathrm{cyc} = -i\pi \int_\Gamma \Psi^H \widehat{(p \vec n)}_\omega dS \]

Unit:

\[ [W_\mathrm{cyc}] = \N\m \]

AeroWorkL1Norm

\(L^1\)-norm of the work per cycle and area.

Definition:

\[ \left\|dW_\mathrm{cyc}/dS \right\|_{L^1} = -i\pi \int_\Gamma | \Psi^H \widehat{(p \vec n)}_\omega | dS \]

Unit:

\[ [\left\|dW_\mathrm{cyc}/dS \right\|_{L^1}] = \N\m \]

AeroWorkMeanPressurePart

Part of the modal work per cycle which is due to the mean pressure.

Definition:

\[ W_\mathrm{cyc,mp} = -i\pi \int_\Gamma \widehat p_0 \Psi^H \widehat{\vec n}_\omega dS \]

Unit:

\[ [W_\mathrm{cyc,mp}] = \N\m \]

AeroWorkPerArea

Work per cycle and area exerted by the aerodynamic forces for an eigenmode \(\Psi\).

Definition:

\[ dW_\mathrm{cyc}/dS = -i\pi \Psi^H \widehat{(p \vec n)}_\omega \]

Unit:

\[ [dW_\mathrm{cyc}/dS] = \kg/\s^{2} \]

AngularMomentumFlux

Definition:

\[ - \dot{m} K_{\abs} \]

Unit:

\[ \kg \, \m^2 \, \s^{-2} \]

AreaRatio

Relation between outflow and inflow throughflow surface area.

Definition:

\[ A_{\outflow}/A_{\inflow} \]

CoefAreaRotationSpeedSquare

Definition:

\[ C_\mathrm{ars} = A_\outflow \, \Omega^{2}/(4 \pi^2) \]

Unit:

\[ [C_\mathrm{ars}] = \m^2/\s^2 \]

Note
\(A\) refers to the area of the full annulus.

CoefDiffusion

Diffusion coefficient - loading criterion for compressors. \(s/c\) is the mean pitch/chord ratio (hub, tip) of the current blade row.

Definition:

\[ DF = 1 - v_{\outflow}/v_{\inflow} + |v_{\theta,\outflow} - v_{\theta,\inflow}| /(2 \, v_{\inflow})* s/c \]

Note
Has to be checked.

CoefEntropyRise

Definition:

\[ C_{\Delta s} = \log(p_{\tot,\abs,\outflow,\is}/p_{\tot,\abs,\inflow})-\log(p_{\tot,\abs,\outflow}/p_{\tot,\abs,\inflow}) \]

CoefFlowAxial

Axial component of flow coefficient.

Definition:

\[ \Phi_x = (v_{x,\inflow}+v_{x,\outflow})/|2\Omega r_{\mean}| \]

Note
For axial turbomachines only! \(r_{\mean}\) is the arithmetic mean of the mass averaged radius at in- and outlet.

CoefLossScholzV1

Loss coefficient after Scholz (1).

Definition:

\[ \omega_{\Scholz 1} = \log(p_{\outflow,\is}/p_{\outflow})/\log(p_{\tot,\outflow}/p_{\inflow}) \]

CoefLossScholzV2

Loss coefficient after Scholz (2). \(h_{\outflow,\is}\) is computed from the absolute total pressure and enthalpy at inlet and the static pressure at outlet.

Definition:

\[ \omega_{\Scholz 2} = (h_{\outflow}-h_{\outflow,\is})/(\tfrac 1 2v_{\outflow}^2) \]

CoefPressure

Definition:

\[ c_p = (p \, - \, p_{\Reference})/(p_{\tot,\Reference}-p_{\Reference}) = \frac{\Delta p} {q_{\Reference}} \]

Note
For airfoil cuts, reference location is inflow at same position as the airfoil cut is located. For 2D surfaces the relative mass flow is used for the reference location.

CoefPressureStagDiffDyn

Total pressure loss coefficient in relative frame of reference based on dynamic pressure. Compressors: reference is inlet, turbines: reference is outlet

Definition:

\[ \omega = \begin{cases} \frac{p_{\tot,\inflow}\ -\ p_{\tot,\outflow}}{p_{\tot,\Reference} -\ p_{\Reference}} = \frac{\Delta p_{\tot}}{q_{\Reference}} & \text{in general} \\ \frac{p_{\tot,\outflow}\ -\ p_{\tot,\inflow}} {p_{\tot,\Reference}\ -\ p_{\Reference}} & \text{for compressors (stages, components or analysis volumes)} \end{cases} \]

Note
Not valid for radial compressor

CoefPressureStagDiffDynAbs

Total pressure loss coefficient in absolute frame of reference based on dynamic pressure. Compressors: reference is inlet, turbines: reference is outlet

Definition:

\[ \omega_{\abs} = \begin{cases} \frac{p_{\tot, \abs, \inflow}\ -\ p_{\tot, \abs,\outflow}}{p_{\tot, \abs, \Reference}\ -\ p_{\Reference}} = \frac{\Delta p_{\tot}}{q_{\Reference}} & \text{in general} \\ \frac{p_{\tot, \abs, \outflow}\ -\ p_{\tot, \abs,\inflow}}{p_{\tot, \abs, \Reference}\ -\ p_{\Reference}} & \text{for compressors (stages, components or analysis volumes)} \end{cases} \]

Note
Stators and cascades only. Not valid for radial compressor.

CoefPressureStagDiffDynTh

Total pressure loss coefficient in relative frame of reference normalized using the theoretic dynamic pressure.

Definition:

\[ \omega_{\mathrm{theoretic}} = \frac{p_{\tot,\inflow}\ - p_{\tot,\loc}}{p_{\tot,\inflow}\ - p_{\outflow}} \]

CoefPressureStagDiffStag

Total pressure loss coefficient in relative frame of reference based on dynamic pressure. Compressors: reference is outlet, turbines: reference is inlet

Definition:

\[ \omega_{\tot} = \begin{cases} \frac{p_{\tot, \inflow}\ -\ p_{\tot,\outflow}}{p_{\tot, \Reference}} = \frac{\Delta p_{\tot}}{p_{\tot, \Reference}} & \text{in general} \\ \frac{p_{\tot,\outflow}\ -\ p_{\tot,\inflow}}{p_{\tot,\Reference}} & \text{for compressors (stages, components or analysis volumes)} \end{cases} \]

CoefPressureStagDiffStagAbs

Total pressure loss coefficient in absolute frame of reference based on total pressure. Compressors: reference is outlet, turbines: reference is inlet

Definition:

\[ \omega_{\tot, \abs} = \begin{cases} \frac{p_{\tot,\abs,\inflow}\ -\ p_{\tot,\abs,\outflow}}{p_{\tot,\abs,\Reference}} = \frac{\Delta p_{\tot}}{p_{\tot, \abs, \Reference}} & \text{in general} \\ \frac{p_{\tot,\abs,\outflow}\ -\ p_{\tot,\abs,\inflow}}{p_{\tot,\abs,\Reference}} & \text{for compressors (stages, components or analysis volumes)} \end{cases} \]

CoefPressureStagIsLossDyn

Isentropic total pressure loss coefficient in relative frame of reference based on dynamic pressure. Compressors: Reference is inlet, turbines: Reference is outlet

Definition:

\[ \zeta_{\tot, \is} = \frac{p_{\tot,\outflow,\is}\ -\ p_{\tot, \outflow}}{p_{\tot,\Reference}\ -\ p_{\Reference}} = \frac{\Delta p_{\tot, \is}}{q_{\Reference}} \]

CoefPressureStagIsLossDynAbs

Isentropic total pressure loss coefficient in absolute frame of reference based on dynamic pressure. Compressors: reference is inlet, turbines: reference is outlet

Definition:

\[ \zeta_{\tot, \abs, \is} = \frac{p_{\tot,\abs,\outflow,\is}\ -\ p_{\tot,\abs,\outflow}} {p_{\tot,\abs,\Reference\ -\ p_{\Reference}}} = \frac{\Delta p_{\tot, \abs, \is}}{q_{\abs,\Reference}} \]

CoefPressureStagLossDyn

Total pressure loss coefficient in relative frame of reference based on dynamic pressure. Compressors: Reference is inlet, turbines: Reference is outlet

Definition:

\[ \zeta_{\tot} = \frac{p_{\tot,\inflow}\ -\ p_{\tot,\outflow}}{p_{\tot,\Reference}\ -\ p_{\Reference}} = \frac{\Delta p_{\tot}}{q_{\Reference}} \]

Note
For rotors only.

CoefPressureStagLossDynAbs

Total pressure loss coefficient in absolute frame of reference based on dynamic pressure. Compressors: reference is inlet, turbines: reference is outlet

Definition:

\[ \zeta_{\tot, \abs} = \frac{p_{\tot,\abs,\inflow}\ -\ p_{\tot,\abs,\outflow}}{p_{\tot,\abs,\Reference}\ -\ p_{\Reference}} = \frac{\Delta p_{\tot, \abs}}{q_{\abs,\Reference}} \]

Note
For stators only

CoefSkinFriction

Wall skin friction coefficient.

Definition:

\[ c_f = \tau_\mathrm{wall}/(p_{\tot,\Reference}-p_{\Reference}) \]

Note
Reference location is inflow at same position as the airfoil cut is located. For 2D surfaces the relative mass flow is used for the reference location.

CoefVelocityMean

Definition:

\[ c_{v,\mean} = \frac{|\Omega| r_{\mean}}{\sqrt{2 |w_{\htot}|}} \]

CoefVelocityRatio

Definition:

\[ c_{v,\mathrm{ratio}} = \sqrt{\frac{1}{2}|\Omega| r_{\rotor}/ |v_{\theta,\abs,\outflow,\rotor} - v_{\theta,\abs,\inflow,\rotor}|} \]

CoefWork

Work coefficient or enthalpy rise coefficient. \(r_{\mean}\) is the arithmetic mean of the mass averaged radius at in- and outlet.

Definition:

\[ \psi = w/(\Omega r_{\mean})^2 \]

CoefWork2

Alternative definition for work coefficient.

Definition:

\[ \psi_2 = 2\psi \]

CoefWorkIsentropic

Isentropic work coefficient or isentropic enthalpy rise coefficient.

Definition:

\[ \psi_{\is} = \eta_{\is,\noleak} \psi \]

CoefWorkIsentropic2

Alternative definition for isentropic work coefficient.

Definition:

\[ \psi_{\is,2} = 2 \psi_{\is} \]

CoefZweifel

Blade loading criterion for turbines.

Definition:

\[ C_{\Zweifel} = \Zweifel \, n_{\blades} \, c_{\x} \]

Unit:

\[ [C_{\Zweifel}] = \m^2 \]

CoordinateMeanRTheta

Turbomachinary coordinate which consists of the mean radius and local theta coordinate.

Definition:

\[ r_{mean}\Theta = (r_{\LE}+r_{\TE})/2\cdot\Theta \]

Unit:

\[ [r_{mean}\Theta] = \m \]

Note
Used in S1 blade slices.

DeHaller

Simple blade loading criterion for compressors.

Definition:

\[ DH = v_{\outflow}/v_{\inflow} \]

DisplacementMagnitude

Magnitude of grid point displacement (difference of coordinates)

Definition:

\[ \delta xyz = \sqrt{ \Re \{\delta x\}^2 + \Re \{\delta y\}^2 + \Re \{\delta z\}^2 + \Im \{\delta x\}^2 + \Im \{\delta y\}^2 + \Im \{\delta z\}^2 } \]

Unit:

\[ [\delta xyz] = \m \]

DistanceWallCoordinate

Dimensionless wall distance computed from the distance \(d\) to the nearest viscous wall. The friction velocity is given by \(u_\tau = \sqrt{\tau_w / \rho}\) with the wall shear stress \(\tau_w\).

Definition:

\[ y^+ = \frac{\rho u_\tau}{\mu} d \]

EfficiencyIsentropicH

Isentropic efficiency defined for rotors, stages, groups, turbomachines.

Definition:

\[ \eta_{\is} = \begin{cases} \frac{\Delta h_{\tot,\is}}{\Delta h_{\tot}} = \frac{h_{\tot,\abs,\outflow,\is}\ -\ h_{\tot,\abs,\inflow}}{h_{\tot,\abs,\outflow}\ -\ h_{\tot,\abs,\inflow}} & \text{for compressors} \\ \frac{\Delta h_{\tot}}{\Delta h_{\tot,\is}} =\frac{h_{\tot,\abs,\outflow}\ -\ h_{\tot,\abs,\inflow}}{h_{\tot,\abs,\outflow,\is}\ -\ h_{\tot,\abs,\inflow}} & \text{for turbines} \end{cases} \]

Note
Only used for spanwise relations, corresponding variable for 0D values is EfficiencyIsentropicHWoLeak

EfficiencyIsentropicHLeak

Isentropic efficiency defined for rotors, stages, groups, turbomachines.

Definition:

\[ \eta_{\is,\leak} = \begin{cases} \frac{P_{\htot,\is,\leak}}{P_{\htot,\leak}} & \text{for compressors} \\ \frac{P_{\htot,\leak}}{P_{\htot,\is,\leak}} & \text{for turbines} \end{cases} \]

Note
All leakage flows included.

EfficiencyIsentropicHMLeak

Definition:

\[ \eta_{\is,\mleak} = \begin{cases} \frac{P_{\htot,\is,\mleak}}{P_{\htot,\mleak}} & \text{for compressors} \\ \frac{P_{\htot,\mleak}}{P_{\htot,\is,\mleak}} & \text{for turbines} \end{cases} \]

Note
All main leakage flows included.

EfficiencyIsentropicHWoLeak

Isentropic efficiency defined for rotors, stages, groups, turbomachines.

Definition:

\[ \eta_{\is,\noleak} = \begin{cases} \frac{\Delta h_{\tot,\is}}{\Delta h_{\tot}} = \frac{h_{\tot,\abs,\outflow,\is}\ -\ h_{\tot,\abs,\inflow}}{h_{\tot,\abs,\outflow}\ -\ h_{\tot,\abs,\inflow}} & \text{for compressors} \\ \frac{\Delta h_{\tot}}{\Delta h_{\tot,\is}} =\frac{(h_{\tot,\abs,\outflow} - h_{\tot,\abs,\inflow})}{(h_{\tot,\abs,\outflow,\is} - h_{\tot,\abs,\inflow})} & \text{for turbines} \end{cases} \]

Note
No leakage flows included.

EfficiencyIsentropicSwirl

Isentropic efficiency based on swirl (rotors, stages, groups, turbomachines).

Definition:

\[ \eta_{\is,\swirl} =\begin{cases} \frac{P_{\htot,\is,\leak}}{P_{\swirl}} & \text{for compressors} \\ \frac{P_{\swirl}}{P_{\htot,\is,\leak}} & \text{for turbines} \end{cases} \]

Note
\(P_{\htot,\is,\leak}\) denotes the overall isentropic power output. \(P_{\swirl}\) denotes the swirl power output. For turbines both should be negative.

EfficiencyIsInclDiffusor

Isentropic efficiency including the total pressure loss in the diffusor.

Definition:

\[ \eta_{\is,\noleak,\Diff} = \frac{\Delta h_{\tot}}{\Delta h_{\tot,\is}} = \frac{h_{\tot,\inflow}\ -\ h_{\tot,\outflow}} {h_{\tot,\inflow}\ -\ h_{\tot,\outflow,\is}} \]

with \(h_{\tot,\outflow,\is} = f\left(p_{\tot, \abs, \Diff,\outflow}\right)\)
Note
For turbines only. No leakage flows included.

EfficiencyIsLeaksDiffusor

Isentropic efficiency including the total pressure loss in the diffusor.

Definition:

\[ \eta_{\is,\leak,\Diff} = \frac{P_{\htot,\leak}}{P_{\htot,\is,\leak}} \]

with \(P_{\htot,\outflow,\is} = f\left(p_{\tot, \abs, \Diff,\outflow}\right)\)
Note
For turbines only. All leakage flows included.

EfficiencyPolytropic

Polytropic efficiency.

Definition:

\[ \eta_{\pol} = \begin{cases} \frac{\kappa-1}{\kappa} \log\left(\frac{p_{\tot,\abs,\outflow}}{p_{\tot,\abs,\inflow}}\right) / \log\left(\frac{h_{\tot,\abs,\outflow}}{h_{\tot,\abs,\inflow}}\right) & \text{for compressors} \\ \frac{\kappa}{\kappa-1} \log\left(\frac{h_{\tot,\abs,\outflow}}{h_{\tot,\abs,\inflow}}\right) / \log\left(\frac{p_{\tot,\abs,\outflow}}{p_{\tot,\abs,\inflow}}\right) & \text{for turbines} \end{cases} \]

EnergyDensityStagnation

Definition:

\[ \begin{cases} \rho \left( e + \frac 1 2 v^2\right) & \text{for translational configurations}\\ \rho \left( e + \frac 1 2 (v^2 - (r\Omega)^2\right) & \text{for rotational configurations} \end{cases} \]

Unit:

\[ \N \m^{-2} \]

EnergyDensityStagnationAbs

Definition:

\[ \rho \left( e + \frac 1 2 v_\abs^2\right) \]

Unit:

\[ \N \m^{-2} \]

Enthalpy

Definition:

\[ h = e + \frac p {\rho} \]

Unit:

\[ [h] = \m^2/\s^2 \]

EnthalpyStagnation

Relative stagnation enthalpy.

Definition:

\[ h_{\tot} = h + \frac 1 2 v^2 \]

Unit:

\[ [h_{\tot}] = \m^2/\s^2 \]

EnthalpyStagnationAbs

Absolute stagnation enthalpy.

Definition:

\[ h_{\tot,\abs} = h + \frac 1 2 v_\abs^2 \]

Unit:

\[ [h_{\tot,\abs}] = \m^2/\s^2 \]

EnthalpyStagnationRot

Relative total enthalpy.

Unit:

\[ [h_\tot] = \m^2/\s^2 \]

Note
The relative velocty is computed from the absolute average and the averaged radius.

Entropy

Entropy of fluid.

Definition:

\[ s = c_v(\log(\kappa p)-\kappa\log(\rho)) \]

Unit:

\[ [s] = \m^2/(\K\s^2) \]

FactorSwirl

Definition:

\[ v_{\theta, \abs} / (r\Omega) \]

FlowTurningAlpha

Relative pitchwise flow turning based on \(\alpha_{\Theta,\MTU}\). Turbine: no absolute value !

Definition:

\[ |\alpha^*_{\Theta,\outflow} - \alpha^*_{\Theta,\inflow}| \]

Unit:

\[ \degree \]

FlowTurningAlphaAbs

Absolute pitchwise flow turning based on \(\alpha_{\Theta,\MTU,\abs}\). Turbine: no absolute value !

Definition:

\[ |\alpha^*_{\Theta,\abs,\outflow} - \alpha^*_{\Theta,\abs,\inflow}| \]

Unit:

\[ \degree \]

FlowTurningAlphaZ

Relative pitchwise flow turning based on \(\alpha_{\z}\). Turbine: no absolute value !

Definition:

\[ |\alpha_{\z,\outflow} - \alpha_{\z,\inflow}| \]

Unit:

\[ \degree \]

FlowTurningAlphaZAbsOK

Absolute pitchwise flow turning based on \(\alpha_{\z,\abs}\). Turbine: no absolute value !

Definition:

\[ |\alpha_{\z,\abs,out} - \alpha_{\z,\abs,in}| \]

Unit:

\[ \degree \]

FlowTurningMeridional

Radial flow turning based on \(\alpha_r\).

Definition:

\[ |\alpha_{r,out} - \alpha_{r,in}| \]

Unit:

\[ \degree \]

FlowTurningTheta

Pitchwise flow turning in relative frame of reference. Turbine: no absolute value !

Definition:

\[ |\alpha_{\Theta,out} - \alpha_{\Theta,in}| \]

Unit:

\[ \degree \]

FlowTurningThetaAbs

Pitchwise flow turning in absolute frame of reference. Turbine: no absolute value !

Definition:

\[ |\alpha_{\Theta,\abs,out} - \alpha_{\Theta,\abs,in}| \]

Unit:

\[ \degree \]

FractionSpecificWork

Specific work of a rotor divided by the specific work of a contol volume (stage, component, volume)

Definition:

\[ w_{\rotor_i} / w_{\mathrm{comp}} \]

FrameVelocityTheta

Velocity of rotating frame of reference at the reference radius, e.g., the mass averaged radius.

Definition:

\[ \Omega r \]

Unit:

\[ \m/\s \]

FrequencyShift

Frequency shift of an eigenmode due to aerodynamic stiffness \(\kappa\).

Definition:

\[ \delta f = \frac{\kappa f}{2\pi} \]

Unit:

\[ [\delta f] = 1/\s \]

Mach

Mach number in relative frame of reference.

Definition:

\[ M = v / a \]

MachAbs

Mach number in absolute frame of reference.

Definition:

\[ M_{\abs} = v_{\abs} / a \]

MachIsentropic

Isentropic Mach number.

Definition:

\[ M_{\is} = \sqrt{\frac{2}{\kappa-1} \, [(\frac{p_{\tot,\Reference}}{p})^\frac{\kappa-1}{\kappa}-1]} \]

with \(T_{\tot,\Reference}=T_{\rot} + \frac{v^2}{2c_p}\) and \(p_{\tot,\Reference}=p_{\Reference}(\frac{T_{\tot,\Reference}}{T_{\Reference}})^\frac{\kappa}{\kappa-1}\).
Note
Reference location for \(T_\rot\), \(T_{\Reference}\) and \(p_{\Reference}\) is the inflow at same position as the airfoil cut is located. For 2D surfaces the relative mass flow is used for the reference location.

MachMeridional

Meridional Mach number.

Definition:

\[ M_{\mer} = \frac{v_\mer}{a} \]

MassFlow

Definition:

\[ \dot{m} = - \rho \mathbf{v} \cdot \vec n \, dS \]

Unit:

\[ [\dot{m}] = \kg/\s \]

Note
w.r.t. full annulus for rotational configurations

MassFlowCorrected

Mass flow corrected via ISA conditions: \(p_{\Reference}\) = 101325 Pa, \(T_{\Reference}\) = 288.15 K.

Definition:

\[ \dot{m}_\mathrm{ISA} = \dot{m} \, \sqrt{\frac {T_{\tot,\abs}}{T_{\Reference}}} \, \frac{p_{\Reference}}{p_{\tot,\abs}} \]

Unit:

\[ [\dot{m}_\mathrm{ISA}] = \kg/\s \]

Note
w.r.t. full annulus for rotational configurations

MassFlowDefect

Mass flow defect.

Definition:

\[ \zeta = \frac{|\dot{m}_{\inflow}|\ -\ |\dot{m}_{\outflow}|}{|\dot{m}_{\inflow}|} \]

MassFlowReduced

Reduced mass flow rate.

Definition:

\[ \dot{m}_{\red} = \dot{m} \, \frac{\sqrt{T_{\tot}}}{p_{\tot}} \]

Unit:

\[ [\dot{m}_{\red}] = \m\s\K^{\frac{1}{2}} \]

Note
w.r.t. full annulus for rotational configurations

MassFlowUnsigned

Unit:

\[ [|\dot{m}|] = \kg/\s \]

Note
w.r.t. full annulus for rotational configurations

MixingLossPressureStagnation

Mixing loss computed as total pressure loss. \(p_\tot\) and \(p\) refer to the average reference value under consideration (e.g. flux average), \(\overline{p}_\tot^W\) is the so-called work average, cf. [8].

Definition:

\[ \omega_{mix} = \frac{\overline{p}_\tot^W\ -\ p_\tot}{p_\tot\ -\ p} \]

MomentumDensityMeridRatio

Meridional velocity density ratio.

Definition:

\[ MVDR = (\rho v_{\mer})_{\outflow} \, / \, (\rho v_{\mer})_{\inflow} \]

MomentumDensityR

Radial component of the momentum density.

Definition:

\[ \rho v_r \]

Unit:

\[ \kg \cdot \m^{-2}\cdot \s^{-1} \]

MomentumDensityTheta

Circumferential component of the relative momentum density.

Definition:

\[ \rho v_\theta \]

Unit:

\[ \kg \cdot \m^{-2}\cdot \s^{-1} \]

MomentumDensityThetaAbs

Circumferential component of the absolute momentum density.

Definition:

\[ \rho v_{\theta,\abs} \]

Unit:

\[ \kg \cdot \m^{-2}\cdot \s^{-1} \]

MomentumDensityX

Axial component of the momentum density.

Definition:

\[ \rho v_x \]

Unit:

\[ \kg \cdot \m^{-2}\cdot \s^{-1} \]

NumberOfSegments

Number of segments across annulus.

Note
Single passage: identical to \(n_{\blades}\).

PitchChordRatio

Pitch to chord ratio for turbomachines and linear cascades.

Definition:

\[ \frac{s}{c} \]

PowerHLeak

Overall power output accounting for all bleeds and leaks.

Definition:

\[ P_{\htot,\leak} = \dot{m}_{\outflow} \, h_{\tot,\abs,\outflow} \, - \, \dot{m}_{\inflow} \,h_{\tot,\abs,\inflow} \, + \, \dot{m}_{\bleed} \,h_{\tot,\abs,\bleed} \, - \, \dot{m}_{\cool} \,h_{\tot,\abs,\cool} \]

Unit:

\[ [P_{\htot,\leak}] = \W \]

PowerHMLeak

Overall power output accounting for all main bleeds and leaks.

Definition:

\[ P_{\htot,\mleak} = \dot{m}_{\outflow} \, h_{\tot,\abs,\outflow} \, - \, \dot{m}_{\inflow} \,h_{\tot,\abs,\inflow} \, + \, \dot{m}_{\mbleed} \,h_{\tot,\abs,\mbleed} \, - \, \dot{m}_{\mcool} \,h_{\tot,\abs,\mcool} \]

Unit:

\[ [P_{\htot,\mleak}] = \W \]

PowerHWoLeak

Overall power output based on main inlets and outlets only.

Definition:

\[ P_{\htot,\noleak} = \dot{m}_{\outflow} \, h_{\tot,\abs,\outflow} \, - \, \dot{m}_{\inflow} \, h_{\tot,\abs,\inflow} \]

Unit:

\[ [P_{\htot,\noleak}] = \W \]

PowerIsentropicHLeak

Overall {isentropic} power output accounting for all bleeds and leaks.

Definition:

\[ P_{\htot,\is,\leak} = (\dot{m}_{\outflow} \, - \, \dot{m}_{\cool}) \, h_{\tot,\is,\outflow} \, - \, \dot{m}_{\inflow} \, h_{\tot,\inflow} \, + \, \dot{m}_{\bleed} \, h_{\tot,\is, \bleed} \, + \, \dot{m}_{\cool} \, h_{\tot,\is, \cool} \]

Unit:

\[ [P_{\htot,\is,\leak}] = \W \]

Note
\(h_{\tot,\is,\outflow}\) is computed from the stagnation pressure at the main outlet and the inlet stagnation temperature and pressure at the main inlet. \(h_{\tot,\is,\cool}\) is computed from the local (cooling) stagnation values and the outlet stagnation pressure. \(h_{\tot,\is, \bleed}\) is computed from the bleed total pressure and the inlet stagnation temperature and pressure.

PowerIsentropicHMLeak

Overall {isentropic} power output accounting for all main bleeds and main leaks.

Definition:

\[ P_{\htot,\is,\mleak} = (\dot{m}_{\outflow} \, - \, \dot{m}_{\cool}) \, h_{\tot,\abs,\is,\outflow} \, - \, \dot{m}_{\inflow} \, h_{\tot,\abs,\inflow} \, + \, \dot{m}_{\mbleed} \, h_{\tot,\abs,\is, \mbleed} \, + \, \dot{m}_{\mcool} \, h_{\tot,\abs,\is, \mcool} \]

Unit:

\[ [P_{\htot,\is,\mleak}] = \W \]

PowerIsentropicHWoLeak

Overall isentropic power output {without} accounting for bleeds and leaks.

Definition:

\[ P_{\htot,\is,\noleak} = \dot{m}_{\outflow} \, h_{\tot,\is,\outflow} \, - \, \dot{m}_{\inflow} \, h_{\tot,\inflow} \]

Unit:

\[ [P_{\htot,\is,\noleak}] = \W \]

PowerReducedHLeak

Definition:

\[ P_{\red,\leak} = \frac{P_{\htot,\leak}}{p_{\tot,\inflow,\abs}\sqrt{T_{\tot,\inflow,\abs}}} \]

Unit:

\[ [P_{\red,\leak}] = \W/(\Pa \sqrt{\K}) \]

PowerSwirl

Definition:

\[ P_{\swirl} = \Omega (\dot{m}_{\outflow} K_{\outflow, \abs} + \dot{m}_{\inflow} K_{\inflow, \abs}) \]

Unit:

\[ [P_{\swirl}] = \W \]

Note
Idealized shaft power based on angular momentum flux ( \(\dot{m} K\)) and wheel speed. Positive for compressors , negative for turbines. General domains: Summation of \(P_{\swirl}\) over all rotors.

PressureNormalized

Normalized pressure.

Definition:

\[ p^* = \frac{p}{p_{\tot,\inflow}} \]

PressureRatio

Static pressure ratio.

Definition:

\[ \pi = \begin{cases} \frac {p_{\outflow}} {p_{\inflow}} & \text{for compressors} \\ \frac {p_{\inflow}} {p_{\outflow}} & \text{for turbines} \end{cases} \]

PressureStagnation

Stagnation or total pressure in {relative} frame of reference.

Definition:

\[ p_{\tot} = p\left(1+\frac{\kappa-1}{2}M^2\right)^\frac{\kappa}{\kappa-1} \]

Unit:

\[ [p_{\tot}] = \Pa \]

PressureStagnationAbs

Stagnation or total pressure in {absolute} frame of reference.

Definition:

\[ p_{\tot,\abs} = p\left(1+\frac{\kappa-1}{2}M_\abs^2\right)^\frac{\kappa}{\kappa-1} \]

Unit:

\[ [p_{\tot,\abs}] = \Pa \]

PressureStagnationAbsRatio

Stagnation or total pressure ratio in {absolute} frame of reference.

Definition:

\[ \pi_{\tot,\abs} = \begin{cases} \frac{p_{\tot,\outflow,\abs}}{p_{\tot,\inflow,\abs}} & \text{for compressors} \\ \frac{p_{\tot,\inflow,\abs}}{p_{\tot,\outflow,\abs}} & \text{for turbines} \end{cases} \]

PressureStagnationRatio

Stagnation or total pressure ratio in {relative} frame of reference.

Definition:

\[ \pi_{\tot} = \begin{cases} \frac{p_{\tot,\outflow}}{p_{\tot,\inflow}} & \text{for compressors} \\ \frac{p_{\tot,\outflow}}{p_{\tot,\inflow}} & \text{for turbines} \end{cases} \]

PressureStagnationRot

Relative total pressure.

Definition:

\[ p_{\tot,\rot} = p\left(\frac{T_{\tot,\rot}}{T}\right)^{\frac{\kappa}{\kappa - 1}} \]

Unit:

\[ [p_{\tot,\rot}] = \Pa \]

Note
Computed from the absolute averages.

PressureStaticStagAbsRatio

Static to total pressure ratio in absolute frame of reference.

Definition:

\[ \pi_{\mathrm{s},\tot,\abs} = \frac{p}{p_{\tot,\abs}} \]

ReactionEnthalpy

Definition:

\[ \rho_h = \frac{h_{\rotor,\outflow}\ -\ h_{\rotor,\inflow}}{h_{\outflow}\ -\ h_{\inflow}} \]

Note
Computed for stages.

ReactionPressure

Definition:

\[ \rho_p = \frac{p_{\rotor,\outflow}\ -\ p_{\rotor,\inflow}}{p_{\outflow}\ -\ p_{\inflow}} \]

Note
Computed for stages.

ReactionVelocity

Definition:

\[ \rho_v = -\frac{v_{\theta,\rotor,\outflow}\ +\ v_{\theta,\rotor,\inflow}}{\Omega \left(r_{\outflow}\ +\ r_{\inflow}\right)} \]

Note
Computed for stages.

RelativeArcLength

Relative arc length of a point on a spatial curve.

Definition:

\[ s_{\rel} = \frac{s}{S} \]

where \(S\) denotes whole arc length

RelativeChannelHeight

Relative channel height in S3 direction.

Definition:

\[ H_{\rel} = \frac{h}{H} \]

RelativeChord

Coordinate \(x_c\) in chordwise direction.

Definition:

\[ c^* = \frac{x_c \ - \ x_{c,\LE}}{c} \]

RelativeChordAxial

Coordinate \(x - x_{\LE}\) in axial direction normalised with axial chord length \(c_{x}\).

Definition:

\[ c_{\x}^* = \frac{x \, - \, x_{\LE}}{c_{\x}} \]

RelativeChordRadial

Relative chord in terms of radial coordinate \(r\).

Definition:

\[ c_{r}^* = \frac{r \, \ -\ \, r_{\LE}}{r_{\TE} \, \ -\ \, r_{\LE}} \]

RelativeCoordinateR

Relative radial coordinate.

Definition:

\[ r_{\rel} = \frac{r\ -\ r_{\min{}}}{r_{\max{}}\ -\ r_{\min{}}} \]

RelativeMassFlow

Relative mass flow rate across blade span - h=0: hub, h=H: shroud

Definition:

\[ \dot{m}_{\rel} = \frac{\dot{m}\left(h\right)}{\dot{m}\left(H\right)} \]

RelativeMeridionalLength

With \(\Delta s_{\mer} = \sum_\LE\sqrt{\Delta x^2 + \Delta r^2} = \sum_\LE\sqrt{(x - x_{\LE})^2 + (r - r_{\LE})^2}\) and \(S_{\mer} = \sum_\LE^\TE \Delta s_{\mer}\)

Definition:

\[ s_{\mer}^* = \frac{\Delta s_{\mer}}{S_{\mer}} \]

RelativePressure

Relative pressure \(p/p_{\steady}\) in terms of the pressure field from the steady solution \(p_{\steady}\).

Definition:

\[ p_{\rel} = \frac{p}{p_{\steady}} \]

RelativeTemperature

Relative temperature \(T/T_{\steady}\) in terms of the temperature field from the steady solution \(T_{\steady}\).

Definition:

\[ T_{\rel} = \frac{T}{T_{\steady}} \]

RelativeVelocityMeridMag

Relative meridional velocity \(v_{\mer}/v_{\mer,\steady}\) in terms of the meridional velocity field from the steady solution \(v_{\mer,\steady}\).

Definition:

\[ v_{\mer,\rel} = \frac{v_{\mer}}{v_{\mer,\steady}} \]

ReynoldsInflow

Reynolds number based on inflow conditions, used primarily in compressors.

Definition:

\[ Re = Re_\inflow = \frac{\rho_{\inflow} \ c\ v_{\inflow}}{\mu_{\inflow}} \]

Note
\(c\) is used from GMC settings.

ReynoldsOutflow

Reynolds number based on outflow conditions, used primarily in turbines.

Definition:

\[ Re = Re_\outflow = \frac{\rho_{\outflow} \ c\ v_{\outflow}}{\mu_{\outflow}} \]

Note
\(c\) is used from GMC settings.

RotatingFrameVelocityTheta

Frame velocity of rotating system.

Definition:

\[ r \Omega \]

Unit:

\[ \m/\s \]

RotationSpeed

Rotational speed of relative system in rounds per second.

Definition:

\[ \frac \Omega{2\pi} \]

Unit:

\[ 1/\s \]

RotationSpeedReduced

Reduced wheel speed of rotor.

Definition:

\[ \frac{\Omega}{2 \pi \sqrt{T_{\tot,\abs,\inflow}}} \]

Unit:

\[ 1/(s \sqrt{\K}) \]

ShapeFactor12

Boundary layer shape factor: displacement thickness / momentum thickness.

Definition:

\[ H_{\12} = \frac{\delta_\1}{\delta_\2} \]

ShapeFactor32

Boundary layer shape factor: energy thickness / momentum thickness.

Definition:

\[ H_{\32} = \frac{\delta_\3}{\delta_\2} \]

ShearStressWall

In POST and in the 2D-TRACE.cgns of the unstructured solver of TRACE, the absolute value of the shear stress will be used. In structured TRACE, the direction is determined from the x-component of the tangential velocity.

Definition:

\[ \tau_w = \mu\frac{\partial u_{||}}{\partial n} \]

Unit:

\[ [\tau_w] = Pa \]

SpecificHeatRatio

Ratio of specific heats or heat capacity ratio.

Definition:

\[ \kappa = \frac{c_p}{c_v} \]

SpecificWorkH

Specific work of turbomachine or turbomachine component.

Definition:

\[ w = \frac{P_{\htot,\leak}}{\left|\dot{\m}_\inflow\right|} \]

Unit:

\[ [w] = \J/\kg \]

Note
In case of spanwise distribution \(P_{\htot,\noleak}\) is used instead of \(P_{\htot,\leak}\).

SpecificWorkSwirl

Specific work based on swirl.

Definition:

\[ w_{\swirl} = \Omega\left({K_{\abs,\inflow}}- {K_{\abs,\outflow}}\right) \]

Unit:

\[ [w_{\swirl}] = \J/\kg \]

SwirlAbs

Flow swirl in absolute frame of reference.

Definition:

\[ K_{\abs} = r v_{\theta,\abs} \]

Unit:

\[ [K_{\abs}] = \m^2/\s \]

Note
Equivalent to angular momentum per unit mass.

TemperatureRothalpy

Definition:

\[ T_{\rot} = T_{\tot}-\frac{v^2}{2c_p} \]

Unit:

\[ [T_{\rot}] = \K \]

TemperatureStagAbsRatio

Total temperature ratio in absolute frame of reference.

Definition:

\[ \tau_{\abs} = \begin{cases} \frac{T_{\tot, \abs, \outflow}} {T_{\tot, \abs, \inflow}} & \text{for compressors} \\ \frac{T_{\tot, \abs, \inflow}} {T_{\tot, \abs, \outflow}} & \text{for turbines} \end{cases} \]

TemperatureStagnation

Total temperature in relative frame of reference.

Definition:

\[ T_{\tot} = T + \, \frac{v^2}{2c_p} = T\left(1+\frac{\kappa-1}{2}M^2\right) \]

Unit:

\[ [T_{\tot}] = \K \]

TemperatureStagnationAbs

Total temperature in absolute frame of reference.

Definition:

\[ T_{\tot, \abs} = T + \, \frac{v_{\abs}^2}{2c_p} = T\left(1+\frac{\kappa-1}{2}M_\abs^2\right) \]

Unit:

\[ [T_{\tot, \abs}] = \K \]

TemperatureStagnationAbsDiff

Difference in total temperature in absolute frame of reference.

Definition:

\[ \Delta T_{\tot, \abs} = T_{\tot, \outflow, \abs} \, - \, T_{\tot, \inflow, \abs} \]

Unit:

\[ [\Delta T_{\tot, \abs}] = \K \]

TemperatureStagnationRot

Relative total temperature.

Definition:

\[ T_{\tot,\rot} = T + \frac{v_{\rot}^2}{2c_p} \]

Unit:

\[ [T_{\tot,\rot}] = \K \]

Note
Computed from the absolute averages.

TemperatureStagRatio

Total temperature ratio in relative frame of reference.

Definition:

\[ \tau = \begin{cases} \frac{T_{\tot, \outflow}} {T_{\tot, \inflow}} & \text{for compressors} \\ \frac{T_{\tot, \inflow}} {T_{\tot, \outflow}} & \text{for turbines} \end{cases} \]

ThicknessDisplacement

Boundary layer displacement thickness.

Definition:

\[ \delta_1 = \int_0^\delta {\left(1-\frac{\rho(y) u(y)}{\rho_0 u_0}\right)dy} \]

Unit:

\[ [\delta_1] = \m \]

ThicknessDisplacementInc

Boundary layer displacement thickness incompressible formulation.

Definition:

\[ \delta_{1, \mathrm{inc}} = \int_0^\delta {\left(1-\frac{u(y)}{u_0}\right)dy} \]

Unit:

\[ [\delta_{1, \mathrm{inc}}] = \m \]

ThicknessEnergy

Boundary layer energy thickness.

Definition:

\[ \delta_3 = \int_0^\delta \frac{\rho(y) u(y)}{\rho_0 u_0} {\left(1-\left(\frac{\rho(y) u(y)}{\rho_0 u_0}\right)^2\right)} dy \]

Unit:

\[ [\delta_3] = \m \]

ThicknessMomentum

Boundary layer momentum thickness.

Definition:

\[ \delta_2 = \int_0^\delta {\frac{\rho(y) u(y)}{\rho_0 u_0} {\left(1 - \frac{u(y)}{u_0}\right)}} dy \]

Unit:

\[ [\delta_2] = \m \]

ThicknessMomentumInc

Boundary layer momentum thickness incompressible formulation.

Definition:

\[ \delta_2 = \int_0^\delta {{\frac{u(y)}{u_0}} {\left(1 - {\frac{u(y)}{u_0}}\right)}} dy \]

Unit:

\[ [\delta_2] = \m \]

TurbulentDissipationRate

Turbulent dissipation rate.

Definition:

\[ \omega = \frac{\epsilon}{k} \]

Unit:

\[ [\omega] = 1/\s \]

TurbulenceIntensity

Turbulence level or turbulence intensity of fluid with turbulent kinetic energy \(k\) and velocity magnitude \(v\).

Definition:

\[ Tu = \frac{\sqrt{\frac {2} {3} k}}{v} \]

TurbulenceIntensityAbs

Turbulence level or turbulence intensity of fluid with turbulent kinetic energy \(k\) and velocity magnitude \(v_\abs\) in absolute frame of reference.

Definition:

\[ Tu_{abs} = \frac{\sqrt{\frac {2} {3} k}}{v_\abs} \]

TurbulentLengthScale

Turbulent length scale corresponding to turbulent kinetic energy \(k\) and specific turbulent dissipation rate \(\omega\) (as used in Wilcox and Menter \(\omega\)-equation).

Definition:

\[ L_T = \frac{\sqrt{k}}{\omega} \]

Unit:

\[ [L_T] = \m \]

VelocityAngleAlpha

Azimuthal or pitchwise flow angle.

Definition:

\[ \alpha^*_{\Theta} = 90^\degree - \arctan\big({\frac{v_{\theta}}{v_{m}}}\big) = 90^\degree - \alpha_{\Theta} \]

Unit:

\[ [\alpha^*_{\Theta}] = \degree \]

Note
Takes values between \(0\degree\) and \(180\degree\), equals \(90^\degree\) when relative flow is purely axial. Undefined when \(v=0\).

VelocityAngleAlphaAbs

Absolute azimuthal or pitchwise flow angle.

Definition:

\[ \alpha^*_{\Theta,\abs} = 90^\degree - \arctan\big({\frac{v_{\Theta,\abs}}{v_{m}}}\big) = 90^\degree - \alpha_{\Theta,abs} \]

Unit:

\[ [\alpha^*_{\Theta,\abs}] = \degree \]

Note
Takes values between \(0\degree\) and \(180\degree\), equals \(90^\degree\) when absolute flow is purely axial. Undefined when \(v_\abs=0\).

VelocityAngleAlphaZ

Azimuthal or pitchwise flow angle with respect to the axial velocity.

Definition:

\[ \alpha_{z} = 90^\degree - \arctan\big({\frac{v_{\theta}}{v_{x}}}\big) \]

if \(v_x > 0\).
Unit:

\[ [\alpha_{z}] = \degree \]

Note
Takes values between \(-180\degree\) and \(180\degree\), equals \(90^\degree\) when relative flow is purely axial. Undefined when flow is purely radial.

VelocityAngleAlphaZAbs

Absolute azimuthal or pitchwise flow angle with respect to the axial velocity.

Definition:

\[ \alpha_{\z,\abs} = 90^\degree - \arctan\big({\frac{v_{\theta,\abs}}{v_{x}}}\big) \]

if \(v_x > 0\).
Unit:

\[ [\alpha_{\z,\abs}] = \degree \]

Note
Takes values between \(-180\degree\) and \(180\degree\), equals \(90^\degree\) when absolute flow is purely axial. Undefined when absolute flow is purely radial.

VelocityAngleEpsilon

Radial flow angle.

Definition:

\[ \epsilon = \arctan\big({\frac{v_{r}}{v_{x}}}\big) \]

if \(v_x > 0\).
Unit:

\[ [\epsilon] = \degree \]

Note
Identical to \(\alpha_r\). Takes values between \(-180^\degree\) and \(180\degree\). Undefined when \(v_\mer=0\).

VelocityAngleEpsilonCylAbs

Radial flow angle.

Definition:

\[ \epsilon_{\cyl,\abs} = \arctan\big({\frac{v_{r}}{v_{abs}}}\big) \]

Unit:

\[ [\epsilon_{\cyl,\abs}] = \degree \]

Note
Angle between the absolute velocity and direction obtained by projecting the absolute velocity into the \(x\)- \(\theta\)~plane. Takes values between \(-90^\degree\) and \(90\degree\). Undefined when \(v_\abs=0\).

VelocityAngleR

Radial flow angle.

Definition:

\[ \alpha_r = \arctan\big({\frac{v_{r}}{v_{x}}}\big) \]

if \(v_x > 0\).
Unit:

\[ [\alpha_r] = \degree \]

Note
Identical to \(\epsilon\). Takes values between \(-180^\degree\) and \(180\degree\). Undefined when \(v_\mer=0\).

VelocityAngleTheta

Azimuthal or pitchwise angle defined as angle between the velocity and the meridional velocity.

Definition:

\[ \alpha_{\theta} = \arctan\big({\frac{v_{\theta}}{v_{\mer}}}\big) = 90^\degree - \alpha^*_{\theta} \]

Unit:

\[ [\alpha_{\theta}] = \degree \]

Note
Takes values between \(-90\degree\) and \(90\degree\), equals \(0^\degree\) when relative flow is purely axial. Undefined when \(v=0\).

VelocityAngleThetaAbs

Absolute azimuthal or pitchwise flow angle defined as angle between the absolute velocity and the meridional velocity.

Definition:

\[ \alpha_{\theta,\abs} = \arctan\big({\frac{v_{\theta,\abs}}{v_{\mer}}}\big) = 90^\degree - \alpha^*_{\theta,\abs} \]

Unit:

\[ [\alpha_{\theta,\abs}] = \degree \]

Note
Takes values between \(-90\degree\) and \(90\degree\), equals \(0^\degree\) when absolute flow is purely axial. Undefined when \(v_\abs=0\).

VelocityAngleY

Angle between y- and x-component of velocity vector in relative frame of reference.

Definition:

\[ \alpha_{y} = \arctan\big(\frac{v_y}{v_x}\big) \]

Unit:

\[ [\alpha_{y}] = \degree \]

Note
Default angle for translational cases.

VelocityAngleYAbs

Angle between y- and x-component of velocity vector in absolute frame of reference.

Definition:

\[ \alpha_{y,\abs} = \arctan\big(\frac{v_{y,\abs}}{v_x}\big) \]

Unit:

\[ [\alpha_{y,\abs}] = \degree \]

Note
Default angle for translational cases.

VelocityAngleZ

Angle between z- and x-component of velocity vector.

Definition:

\[ \alpha_{z} = \arctan\big(\frac{v_z}{v_x}\big) \]

Unit:

\[ [\alpha_{z}] = \degree \]

Note
Default angle for translational cases.

VelocityMeridionalMagnitude

Norm of the vector of the meridional velocity \(v_{\mer}\).

Definition:

\[ \left|{v_{mer}}\right| = \sqrt{v_{\ax}^2 + v_{\rad}^2} \]

Unit:

\[ [\left|{v_{mer}}\right|] = \m/\s \]

VelocityMagnitude

Magnitude of relative velocity vector.

Definition:

\[ v = |\mathbf{v}| \]

Unit:

\[ [v] = \m/\s \]

VelocityMagnitudeAbs

Magnitude of absolute velocity vector.

Definition:

\[ v_\abs = |\mathbf{v}_\abs| \]

Unit:

\[ [v_\abs] = \m/\s \]

VelocityMagnitudeRot

Relative velocity magnitude

Definition:

\[ v_{\rot} = |\mathbf{v}| \]

Unit:

\[ [v_{\rot}] = \m/\s \]

Note
Computed from the absolute averages.

VelocitySound

Speed of sound.

Definition:

\[ a = \sqrt{\kappa R T} \]

Unit:

\[ [a] = \m/\s \]

VelocityTheta

Velocity component in pitchwise direction

Unit:

\[ [v_{\theta}] = \m/\s \]

Note
For flux-averaged data, this is computed from the absolute velocity using the mass-averaged radius.

VelocityThetaRot

Wheel velocity component in pitchwise direction

Definition:

\[ v_{\theta, rot} = v_{\theta, \abs} - \Omega r \]

Unit:

\[ [v_{\theta, rot}] = \m/\s \]

ViscosityEddyRatio

Eddy viscosity normalised by local molecular viscosity.

Definition:

\[ \frac{\mu_{T}}{\mu} \]

ViscosityMolecular

Molecular fluid viscosity.

Definition:

\[ \mu = \rho \nu \]

Unit:

\[ [\mu] = \kg/(\m\s) \]

VorticityNorm

Vorticity vector and its norm

Definition:

\[ W_{norm} = \mathbf{W} = \nabla \times \mathbf{v} = \left( \begin{array}{cc} \frac{\partial v_z}{\partial y} -\frac{\partial v_y}{\partial z}\\[0.1cm] \frac{\partial v_x}{\partial z} -\frac{\partial v_z}{\partial x}\\[0.1cm] \frac{\partial v_y}{\partial x} -\frac{\partial v_x}{\partial y} \end{array} \right)\\ W_{norm} = \left|\mathbf{W}\right| = \sqrt{W_x^2 + W_y^2 + W_z^2} \]

Unit:

\[ [W_{norm}] = 1/\s \]

WorkReduced

Reduced work.

Definition:

\[ W_{\red} = \begin{cases} \frac{h_{\tot,\abs,\outflow}\ -\ h_{\tot,\abs,\inflow}}{T_{\tot,\abs,\inflow}} & \text{for component}\\ \frac{w}{T_{\tot,\abs,\inflow}} & \text{for stage} \end{cases} \]

Unit:

\[ [W_{\red}] = \J/(\kg\K) \]

Zweifel

Loading criterion for turbines.

Definition:

\[ \Zweifel = \lvert\frac{\dot{m}_{\inflow} K_{\inflow,\abs}\ +\ \dot{m}_{\outflow} K_{\outflow,\abs}}{(p_{\tot,\inflow}\ -\ p_{\outflow}) A_{\airfoil}}\rvert \]

Unit:

\[ [\Zweifel] = \m \]

Note
\(A_{\airfoil}\) is the blade surface projected into the S2m plane x-r.