TRACE User Guide  TRACE Version 9.6.1
Synthetic turbulence

Synthetic tubulence generators (STG) implemented in TRACE:

Synthetic turbulence can be applied as part of the inlet boundary conditions:

  • Riemann

and for the following scale-resolving simulation approaches:

To use a STG you have to use the control file command

ChgPanelAtt -FAMILY <familyName> -ACTIVATE_STG

You can use both global values and 2D distributions. The corresponding interfaces are summarized in the following table:

STG input variables and possibilities
STG Necessary input variables global 2D distribution
Shur et al. Turbulent length scale \(L_T\) GMC Specification of inlet turbulence state
Reynolds stress \(\uu ij\) isotrop Control file command STG_GLOBAL_ISOTROPIC_REYNOLDS_STRESS
complete tensor -

Adaption of given total quantities

The Riemann boundary conditions use a given total pressure. Since the added turbulent kinetic energy means an additional energy contribution, the total pressure used by the boundary condition to calculate the mean flow has to be reduced by a corresponding value.

Isentropic Relation:

\begin{align}\frac{p_0}{p}&=\left(1+\frac{\gamma-1}{2}{Ma}^2\right)^{\frac{\gamma}{\gamma-1}}\\ &=\left(1+\frac{\gamma-1}{2}\left(\frac{\left|\mathbf{u}\right|}{a}\right)^2\right)^{\frac{\gamma}{\gamma-1}}\\ &=\left(1+\frac{\gamma-1}{a^2}\frac{\left|\mathbf{u}\right|^2}{2}\right)^{\frac{\gamma}{\gamma-1}}\end{align}

Moving the exponent to the left side and use the mean absolute velocity leads to:

\begin{align}\left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}}&= \left[\left(1+\frac{\gamma-1}{a^2}\frac{\left|\mathbf{u}\right|^2}{2}\right)^{\frac{\gamma}{\gamma-1}}\right]^{\frac{\gamma-1}{\gamma}}\end{align}

\begin{align}\left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}}&=1+\frac{\gamma-1}{a^2}\frac{\overline{\left|\mathbf{u}\right|^2}}{2}\end{align}

Using the Reynolds average only for the velocity \(u_i =\overline{u_i} + u_i'\) and the relation ([47] [p. 333]):

\begin{align} \frac{1}{2} \overline{u_i^2} &= \frac{1}{2}\left(\overline{u_1}^2 + \overline{u_2}^2 + \overline{u_3}^2\right) + \frac{1}{2}\left(\overline{{u'_1}^2} + \overline{{u'_2}^2} + \overline{{u'_3}^2}\right)\\ &= \sum\limits_i \left(\frac{1}{2}\overline{u_i}^2 + \frac{1}{2}\overline{{u'_i}^2}\right)\end{align}

it follows:

\begin{align}\left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}}&=1+\frac{\gamma-1}{a^2}\sum\limits_i \left(\frac{1}{2}\overline{u_i}^2 + \frac{1}{2}\overline{{u'_i}^2}\right)\end{align}

\begin{align}\left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}}&=\underbrace{1+\frac{\gamma-1}{a^2}\sum\limits_i \frac{1}{2}\overline{u_i}^2}_{ \left. \left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}} \right|_{\text{lam}}} + \frac{\gamma-1}{a^2}\sum\limits_i \frac{1}{2}\overline{{u'_i}^2}\\ &= \left. \left(\frac{p_0}{p}\right)^{\frac{\gamma-1}{\gamma}} \right|_{\text{lam}} + \frac{\gamma-1}{a^2}\sum\limits_i \frac{1}{2}\overline{{u'_i}^2}\end{align}

A similar equation can be determined for the total temperature \(T_0\). The continuity of energy for steady flows with neglected gravity may be written in the following form ([47] [p. 151]):

\[h+\frac{1}{2}\left|\mathbf{u}\right|^2 = h_0\]

The enthalpy of ideal gas is inserted and the equation follows:

\[c_pT+\frac{1}{2}\left|\mathbf{u}\right|^2 = c_pT_0\]

The total temperature calculated with the mean velocity is written as:

\begin{align}T_0 &= T+\frac{1}{2c_p}\overline{\left|\mathbf{u}\right|^2}\\ T_0 &= \underbrace{T + \frac{1}{2c_p}\sum\limits_i \overline{u_i^2}}_{T_{0,lam}} +\frac{1}{2c_p}\sum\limits_i\overline{{u'_i}^2} \end{align}

Similar to the total pressure, the total temperature is reduced by the turbulent part. To non-dimensionalize this equation, the following steps are necessary:

\begin{align} T_0^* &= T^*+\frac{1}{2c_p}\overline{\left|\mathbf{u^*}\right|^2}\\ \frac{T_0^*}{T_0^*}T_0^* &= \frac{T_0^*}{T_0^*}T^*+\frac{1}{2c_p}\overline{\left|\frac{a_0^*}{a_0^*}\mathbf{u^*}\right|^2} \\ T_0^* T_0 &= T_0^*T+\frac{1}{2c_p}\overline{\left|a_0^*\mathbf{u}\right|^2}\\ T_0 &= T+\frac{{a_0^*}^2}{2c_pT_0^*}\overline{\left|\mathbf{u}\right|^2}\end{align}

Since \(a_0^2 = \gamma R T_0^* \) and \(c_p=\frac{\gamma R}{\gamma-1}\)it follows:

\begin{align}T_0 &= T+\frac{\gamma R T_0^*}{2c_pT_0^*}\overline{\left|\mathbf{u}\right|^2}\\ T_0 &= T+\frac{c_p\left(\gamma-1\right)}{2c_p}\overline{\left|\mathbf{u}\right|^2}\\ T_0 &= T+\frac{1}{2}\left(\gamma-1\right)\overline{\left|\mathbf{u}\right|^2}\end{align}